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Abstract

In q-space diffusion NMR, the probability P ðr; tdÞ of a molecule having a displacement r in a diffusion time td is obtained under

the assumption that the diffusion-encoding gradient g has an infinitesimal duration. However, this assumption may not always hold,

particularly in human MRI where the diffusion-encoding gradient duration d is typically of the same order of magnitude as the time

offset D between encoding gradients. In this case, finite-d effects complicate the interpretation of displacement probabilities measured

in q-space MRI, and the form by which the signal intensity relates to them. By considering the displacement-specific dephasing,

hrjei/i, of a set of spins accumulating a constant displacement vector r in the total time Dþ d during which diffusion is encoded, the

probability recovered by a finite-d q-space experiment can be interpreted. It is shown theoretically that a data analysis using a

modified q-space index ~qq ¼ cdgg, with c the gyromagnetic ratio and g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
, recovers the correct displacement

probability distribution if diffusion is multi-Gaussian free diffusion. With this analysis, we show that the displacement distribution

P ðr; texpÞ is measured at the experimental diffusion-encoding time texp ¼ Dþ d, and not at the reduced diffusion time tr ¼ D� d=3 as

is generally assumed in the NMR and MRI literature. It is also shown that, by defining a probability Pðy;DÞ that a time t < d exists

such that a displacement y occurs from time t to t þ D, it is possible to describe the physical significance of the result obtained when

we use the q-space formalism valid for infinitesimal d when d is not infinitesimal. These deductions were confirmed by simulations

for homogeneous Gaussian diffusion and for heterogeneous diffusion in permeable microscopic Gaussian domains that are ho-

mogeneous on the lm scale. The results also hold for diffusion inside restricted spherical reflecting domains, but only if the radius of

the domain is larger than a critical size. The simulations of the displacement-specific dephasing obtain that if d > dc then

g 6¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
which implies that we can no longer obtain the correct displacement probability from the displacement

distribution. In the case that jgj ¼ 18 mT/m and D� d ¼ 5ms, the parameter dc in ms is given by ‘‘dc ¼ 0:49a2 þ 0:24’’ where a
is the sphere�s radius expressed in lm. Simulation of q-space restricted diffusion MRI experiments indicate that if

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
, the recovered displacement probability is always better than the Gaussian approximation, and the

measured diffusion coefficient matches the diffusion coefficient at time texp ¼ Dþ d better than it matches the diffusion coefficient at

time tr ¼ D� d=3. These results indicate that q-space MRI measurements of displacement probability distributions are theoretically

possible in biological tissues using finite-duration diffusion-encoding gradients provided certain compartment size and diffusion

encoding gradient duration constraints are met.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Diffusion MRI; q-space; Diffusion time; Displacement probability; Finite-duration gradients; Restricted diffusion
* Corresponding author. Fax: +1-314-362-6911 (MIR), +33-

169867786 (SHFJ).

E-mail address: nicolasfl_cpgd@yahoo.com (N.F. Lori).

1090-7807/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2003.08.011
1. Introduction

Diffusion MRI (DMRI) enables the study of water

diffusion in a variety of environments (e.g. porous ma-

terials, gases and biological tissues). A pulse-sequence
that is often used in DMRI is the pulsed-gradient spin
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echo (PGSE) or Stejskal–Tanner sequence [1] in which
diffusion-encoding gradients are applied before and after

a 180� spin-echo refocusing pulse. The relevant diffu-

sion-encoding parameters are the size and direction of

the diffusion-encoding gradient vector, g, the time dif-

ference between the onset of the two diffusion-encoding

gradients, D, and the duration of each of the diffusion-

encoding gradients, d. Several methods have been de-

veloped to analyze the MR signal intensity expected by
this encoding. In the case of Gaussian diffusion, one can

either solve the Torrey–Bloch equation [1], use the

Gaussian phase dispersion [2–4], or use the center of

mass approach [5].

In NMR of small samples, hardware with high gra-

dient strengths can be used so that the time d can be

chosen to meet the condition d � D. In this case it is

straightforward to obtain the probability P ðr; tdÞ of a
water molecule accumulating a net displacement r over

the diffusion time td. This displacement probability is

calculated by making an inverse Fourier transformation

of the signal intensities measured with different g in a

q-space imaging experiment [6–11], where the diffusion

encoding time is given by D, and the q-space Fourier

transform index is given by the vector q ¼ cdg where c is
the gyromagnetic ratio.

In human MRI experiments, gradient strengths are

limited and, to compensate, d is typically lengthened to

be on the order of D (e.g., d ¼ 25ms and D ¼ 31ms in

[11]). Under such conditions of finite-duration diffusion-

encoding gradients (finite-d), the probability distribu-

tions measured in q-space imaging are not necessarily

valid, and the interpretation of the true diffusion time at

which the probability distribution is measured is com-
plicated [7, p. 364].

Several authors have provided methods that enable

determination of the MR signal intensity from a known

form of the displacement distribution (the ‘‘forward

problem’’) in the finite-d case. However, all these

methods have drawbacks, and none enable solution of

the ‘‘inverse problem’’ of measuring the probability

distribution from the MR signal intensities. Some pa-
pers [12,13] consider that, instead of D, the diffusion

time is actually the reduced diffusion time tr ¼ D� d=3.
This assignment is based on taking the Fourier trans-

form of the Stejskal–Tanner signal intensity equation,

which replaces the experimental diffusion encoding time

Dþ d with the reduced time tr ¼ D� d=3 inside the

Gaussian probability expression. However, the termi-

nology of this method is misleading, because the effect of
the pulse sequence parameters of gradient encoding

timings ‘‘�ð4=3Þd’’ is imparted to a biological parameter

related to intrinsic diffusion displacement probability,

rather than to an NMR pulse sequence parameter re-

lated to phase shifts [see [14] for discussion]. Further-

more, it is unclear why an increase in the duration d
would cause a reduction in the true diffusion time, as
predicted in this method. Therefore, it is not necessarily
valid to equate the reduced diffusion time to the exper-

imental diffusion-encoding time experienced by the wa-

ter molecule. The propagator method [15–18] calculates

the MR signal intensity by dividing the diffusion-en-

coding gradient time d into infinitesimal time intervals.

Then it chooses each pair of infinitesimal time intervals

belonging to different diffusion-encoding gradients and

considers that they behave like infinitesimal-d q-space
imaging experiments. Finally, it integrates over the

contribution of all infinitesimal time intervals to obtain

the MR signal intensity. This method has provided great

help in understanding the structure of pores [15–18], but

does not enable obtaining the displacement distribution

from the MR signal intensities. In a third approach of

analytical calculation of total dephasing, the total signal

attenuation over the entire spin population is derived
under certain conditions by assuming that there is a

known probability expression for diffusive accumulation

of a phase shift [2–4]. This approach enables a valid

Fourier-like inverse transformation, but such a trans-

formation provides a probability of evolving a phase

shift rather than a probability of displacement.

In this paper we analyze the dephasing process and

describe two basic physical ways of treating the diffusion
phenomenon in probability terms for the finite-d case.

The first is the transport probability interpretation,

which only depends on time D, and is very similar to the

analytical calculation of total dephasing developed by

Stepisnik [2–4]. The second defines the more traditional

displacement probability, but does so under the as-

sumption that it is possible to define the average of the

displacement-specific dephasing.
By simple statistical analysis, we obtain the form of

the average of the displacement-specific dephasing in

the case of homogeneous non-restricted Gaussian dif-

fusion [19]. We then made simulations to study the

range of applicability of this formalism for the case of

non-homogeneous non-restricted diffusion, and re-

stricted diffusion inside a spherical domain. Finally, we

simulated a q-space diffusion MR experiment for the
case of homogeneous diffusion inside an impermeable

sphere.
2. Theory

2.1. General analysis of the dephasing in a DMRI

experiment

The average dephasing of a spin population in an MR

experiment can be visualized in several different ways.

The different visualizations of dephasing open different

windows on the dynamics of the water molecules caus-

ing the dephasing phenomenon. Consider a water mol-

ecule moving between times t ¼ 0 and t ¼ TE, with TE
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the echo-time, and having a three-dimensional spatial
location rðtÞ at time t.

There are several ways of defining displacement

probabilities. First, there is the physical displacement

probability, which is the actual displacement probability

of the water molecules, and then there is the MR signal-

defined displacement probability, which is inferred from

the data by analyzing the intensity of the MR signal for

different experimental parameters. The method for ob-
taining the MR signal-defined displacement probability

is typically q-space MR [10,20,21], with g being the pa-

rameter that is varied.

We will consider two basic types of physical dis-

placement probabilities. The first type is the probability

density that there exist time moments t within the period

of operation of the first diffusion-encoding gradient such

that a water molecule undergoes a displacement y from
time t to t þ D, given by y ¼ rðt þ DÞ � rðtÞ. This prob-
ability is indicated as Pqðy;DÞ. In a PGSE experiment,

this probability is identical to the probability of ob-

taining a phase shift / ¼ q � y for infinitesimal time slices

of the diffusion-encoding gradients at time t and t þ D
(see [2] for a description of phase shift probability),

where q ¼ cdg. In the second definition of physical dis-

placement probability, the probability density that a
water molecule has displacement r ¼ rf � ro during the

entire time of the diffusion experiment is Pqðr; texpÞ,
where ro is the location of the water molecule at the

onset of the first diffusion-encoding gradient, rf is the

location after termination of the second diffusion-en-

coding gradient, and texp is the total encoding time of the

diffusion experiment between the onset of the first gra-

dient and the termination of the second gradient (i.e.,
Dþ d). Diffusion MRI usually assumes to be measuring

this second probability, but at diffusion time tr instead of

texp. We will attempt to clarify the displacement proba-

bility that is measured in a finite-d q-space MRI exper-

iment using these two basic probability definitions.

In a PGSE experiment, the relevant parameter that is

measured is the attenuation of signal in the MRI voxel

or NMR sample induced by the diffusion-encoding
gradients, given by the average dephasing hei/i of the

spins of the water molecules in the sample or voxel:

ei/
� �

¼ Ig;D;d
I0

: ð1Þ

In Eq. (1), Ig;D;d is the MR signal intensity that is a

function of g , D, and d, obtained with diffusion-en-

coding gradient g of duration d with an offset D between

the two diffusion-encoding gradients; and I0 is the MR

signal intensity obtained in the absence of diffusion-en-

coding gradients. Eq. (1) assumes that all effects from
background gradients are multiplicative and identical

for I0 and Ig;D;d.
If the experimental medium is not homogeneous, the

displacement probability densities will depend on the
location of the starting point ro. It might also occur that
the water density qðroÞ will not be constant throughout

the medium. For each of the two definitions of dis-

placement probability, there is a corresponding relation

between the average dephasing and the probability

density according to

ei/
� �

¼
Z 1

�1
qðyoÞ

Z 1

�1
Pqðyf ; yo;DÞeiq�ðyf�yoÞdyfdyo ð2Þ

and

ei/
� �

¼
Z 1

�1
qðroÞ

Z 1

�1
Pqðrf ; ro; texpÞhrf ; rojei/idrfdro;

ð3Þ

where hrf ; r0jei/i is the average signal attenuation for a
group of spins starting at location r0 and ending at lo-

cation rf , and where the integrals are over infinite three-

dimensional space. In Eq. (2), Pqðyf ; yo;DÞ relates to the

probability of acquiring a specific phase shift eiqðyf�yoÞ

(analogous to the phase shift probability in [2]), and

describes the behavior of time slices of the diffusion

encoding experiment offset by D, similar to the analysis

in the propagator method [15]. In Eq. (3), use of the
displacement-specific dephasing factor hrf ; r0jei/i pro-

vides a necessary link between the displacement proba-

bility and the dephasing that enables the integral to be

written.

If the displacement-specific dephasing hrf ; r0jei/i
only depends on the net displacement r ¼ rf � r0 (this

will later be shown to be the case in Gaussian free

diffusion and in certain cases of restricted diffusion),
then we define the average of the displacement-specific

dephasing as hrjei/i. Then, using Eqs. (2) and (3), we

define

Pðy;DÞ ¼
Z 1

�1
qðyoÞPqðyþ yo; yo;DÞdyo ð4Þ

and

P ðr; texpÞ ¼
Z 1

�1
qðroÞPqðrþ ro; ro; texpÞdro: ð5Þ

Applying Eqs. (4) and (5) to Eqs. (2) and (3), respec-

tively, we obtain

ei/
� �

¼
Z 1

�1
Pðy;DÞeiq�ydy ð6Þ

and

ei/
� �

¼
Z 1

�1
P ðr; texpÞ r j ei/

� �
dr: ð7Þ

Comparing Eqs. (6) and (7), and noting that the in-

tegration variables are dummy variables with identical

integration ranges that are symmetric about the origin in

three-dimensional space, we obtain a relation between

the even-symmetric part of the two definitions of dis-

placement probabilities:
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Sym½Pðr;DÞeiq�r� ¼ Sym P ðr; texpÞ rjei/ : ð8Þ

This expression provides some understanding of the

relation between Pðy;DÞ and P ðr; texpÞ, where ‘‘Sym’’ is
the symmetric part of a function.

If the displacement probabilities Pðy;DÞ and P ðr; texpÞ
are zero-centered even symmetric, as expected in diffu-

sion, Eqs. (6) and (7) become

ei/
� �

¼
Z 1

�1
Pðy;DÞ cosðq � yÞdy ð9Þ

and

ei/
� �

¼
Z 1

�1
P ðr; texpÞSym rjei/

� �
dr: ð10Þ

When MRI q-space imaging is performed using finite-d
diffusion-encoding gradients, and the data are analyzed

using standard q-space methods, the MR signal-defined
displacement probability PMRðr; trÞ as defined in

[10,20,21] is:

PMRðr; trÞq ¼
Z 1

�1
ei/
� �

D;d;g
cosðq � rÞdq: ð11Þ

For the case of general (non-Gaussian) displacement

distributions, Eqs. (9) and (10) can be compared to Eq.
(11) to obtain, respectively,

PMRðr; trÞq ¼ Pðr;DÞ ð12Þ

and, using u as a displacement integration variable,

PMRðr; trÞq ¼
Z 1

�1

Z 1

�1
P ðu; texpÞSym ujeiu

� �
� cosðq � rÞdudq: ð13Þ

The problem in Eqs. (11)–(13) is that three different

diffusion times (tr;D, and texp) appear in those equations,

which makes it very difficult to assign a single diffusion

time to the experiment. Of these three diffusion times,

the most problematic is tr for its physical meaning is
unclear.

To relate PMRðr; trÞ with P ðr; texpÞ it is necessary and

sufficient to know Symhrjei/i. In the next section, we

derive Symhrjei/i for the case of Gaussian diffusion.

2.2. Finite d q-space imaging for unrestricted Brownian

motion (Gaussian diffusion)

The average signal attenuation in a voxel for a Ste-

jskal–Tanner experiment with the diffusion experiment

encoding time texp is given by [1,3,4]

ei/
� �

D;d;g
¼ e�ðcdgÞTD̂DðcdgÞ½D�d=3�; ð14Þ

where D̂D is the diffusion tensor, which is a function of the

time-dependent random acceleration vector A (with �
the symbol for vector product) and the friction tensor

f
_

, defined in [22] as

D̂D ¼ f
_�1
� �T R1

�1ds ATðsÞ � Að0Þ
� �

6
f
_�1
� �

: ð15Þ
We propose a modified q-space index ~qq � gq where-
upon, if P ðr; texpÞ is a zero-centered Gaussian distribu-

tion with variance equal to ½2D̂Dtexp��1, the Fourier

transform [23] of Pðr; texpÞ is:

F½P r; texp
� 	

�r ~qq

 �

¼
Z 1

�1
2pð Þ�3=2

2D̂Dtexp
��� ����1=2

� e�
1
2
r� 2D̂Dtexp½ ��1

�r cosðgq � rÞdr

¼ e�ðcdgÞTD̂DðcdgÞðg2texpÞ: ð16Þ

Because Eq. (16) must agree with Eq. (14) in the case
of Gaussian diffusion, we obtain that g defined as

g ¼ cos�1½Symhrjei/i�
q � r

where cos�1 is the inverse of the cosine function, is given

by:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3

texp

s
: ð17Þ

Combining Eqs. (10), (14), (16) and (17) we obtain

ei/
� �

¼
Z 1

�1
P r; texp
� 	

cos cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3

texp

s
g � r

 !
dr: ð18Þ

The inverse Fourier transform [23] of Eq. (18) can

then be taken to provide a means for measuring

PMRðr; texpÞ~qq in q-space imaging according to

PMR r; texp
� 	

~qq
¼ F�1 ei/

� �
D;d;g

h i
~qq
rð Þ

¼ 2pð Þ�3=2

Z 1

�1
ei/
� �

D;d;g
cos ~qq � r

 �

d~qq: ð19Þ

It is later shown that Eq. (19) is valid even if we have

heterogeneous Gaussian diffusion with macroscopic or

microscopic Gaussian domains, and even in the case of

spherically restricted diffusion provided the compart-

ment size is not too small.

Comparing Eq. (18) with Eq. (7) and assuming that

P ðr; texpÞ is symmetric, we obtain:

Sym r ei/
��� �

¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3

texp

s
cdg � r

 !
: ð20Þ

Because hrjei/i is complex-valued and because of Eq.

(8), then when Eq. (20) holds we must have

Symhrjei/i ¼ Rehrjei/i and Asymhrjei/i ¼ Imhrjei/i
where ‘‘Asym’’ is the anti-symmetric part of the func-

tion. This implies that Asymhrjei/i ¼ sinðicdg � rÞ where
i is not necessarily equal to g.

As said in the Introduction, it is expected that
texp ¼ Dþ d. To confirm this, we did a simulation of

Brownian motion [22]. In that Brownian motion simu-

lation, we used the result that, for non-infinitesimal

time-scales (i.e., time-scales corresponding to displace-

ments bigger than the nanometer), a Brownian motion
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with the above-mentioned characteristics behaves as a
random walk with diffusion tensor D̂D defined by Eq.

(15). In that three-dimensional random walk, the three

dimensions are considered separately. For each direc-

tion (the z-direction for example), and for each time-step

d=L, the molecule will have a displacement with mag-

nitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẑzT �D

_

� ẑzd=L
q

. The probability of having posi-

tive displacements or negative displacements is the same,
and is independent for each of the three dimensions

(notice that in the case of restricted diffusion, the

equivalence of positive and negative displacement

probability is not valid near the boundary).

We then analyzed the shape of the real and imaginary

parts of hrjei/i and confirmed that Symhrjei/i ¼ Rehrjei/i
and Asymhrjei/i ¼ Imhrjei/i. Using Rehrjei/i, we were

able to confirm Eq. (20) with texp ¼ Dþ d within statisti-
cal error (seeResults), which obtains the final formofEqs.

(17) and (20) for mono-Gaussian free diffusion:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3
Dþ d

r
ð21Þ

and

Sym rjei/
� �

¼ Re rjei/
� �

¼ cos cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3
Dþ d

r
g � r

 !
: ð22Þ

Because Eqs. (21) and (22) do not depend on the
diffusion tensor, there is no reason that those equations

would depend on r0 even if the diffusion process is not

mono-Gaussian. Simulations in later sections further

strengthen this point in the case of heterogeneous, non-

restricted Gaussian diffusion. In the case of restricted

diffusion, we obtain that Eq. (22) still holds provided the

restricted domain is large enough.

Combining Eqs. (10) and (22), in the cases that Eq.
(22) is valid, we obtain that:

P ðr;Dþ dÞ ¼
Z 1

�1
ei/
� �

D;d;g
cos cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3
Dþ d

r
g � r

 !

� d cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3
Dþ d

r
g

" #
: ð23Þ

Because the right-hand sides of Eqs. (23) and (19) are

identical, we have therefore shown that, in the case

where Eq. (22) is valid, the MR-observed probability is

given by

PMR r; texp
� 	

~qq
¼ P r;Dð þ dÞ: ð24Þ

The Fourier transformation in Eq. (23) can be used to

define a revised q-space formalism that gives valid re-

sults even when d is finite, provided that Eq. (22) is valid.

To apply this formalism, the investigator can vary d;D,
or g to cause variations in ~qq, and must index the inten-

sities with the proper ~qq prior to Fourier transformation
as in Eq. (23). Later in the Results section, using simu-
lations of water diffusion, we demonstrate that Eq. (22)

is valid in a large range of physical situations. As it is not

possible to do an infinite number of signal attenuation

measurements, in practice Eq. (23) would be approxi-

mated by a three-dimensional discrete sum (as it is done

in standard q-space imaging, e.g. [11]).

The different values of ~qq can be obtained in different

ways, but the only way to vary ~qq in a manner that is
consistent with Eq. (23) and that yields a meaningful

probability measurement is to fix texp ¼ Dþ d. The sim-

plest way to do this is to fix both D and d, so that g is the

only parameter that varies. In this case, Eq. (23) reduces to

P r;Dð þ dÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3
Dþ d

r Z 1

�1
ei/
� �

D;d;g

� cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� d=3
Dþ d

r
q � r

 !
dq ð25Þ

This expression has the typical appearance of con-
ventional q-space analysis, with the exception of factorsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD� d=3Þ=ðDþ dÞ
p

that account for finite-d effects. Eq.
(25) reduces to the infinitesimal-d q-space expression

when d << D.
3. Methods

3.1. Displacement-specific dephasing for homogenous

Gaussian diffusion

We calculated Rehrjei/i and Imhrjei/i by numerically

simulating the phase shifts accumulated by 3D random

walks with homogeneous Gaussian diffusion occurring

during a PGSE experiment having diffusion-encoding

gradients along z. If the diffusion is homogeneously
Gaussian, we know that Rehei/i ¼ e�q�D

_

�q½D�d=3� and

Imhei/i ¼ 0 [1]. This expected result was used to check

on our simulations at various d=D ratios. Subsets of

random walks were chosen having fixed Z displace-

ments, and these subsets were used to estimate the dis-

placement-specific dephasings Rehrjei/i and Imhrjei/i as
a function of the three-dimensional displacement r (it

was only necessary to consider the z component of r
because the gradient was along z). The observed r de-

pendence of the simulated Rehrjei/i was then compared

to the right-hand-side of Eq. (20) to confirm that Eqs.

(21) and (22) are valid. The same analysis was done for

the imaginary component to obtain the value for i, al-
though the functional form of the imaginary component

cannot be determined by the theory herein (except for

knowing that it must behave as a sine).
Unless otherwise stated, 800 random walks were sim-

ulated to calculate the displacement-specific dephasing at

a given d=D ratio. The simulations were repeated for dif-

ferent d=D ratios. Each random walk was composed of
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805 steps, having at each step a probability of stepping in
direction r such that the diffusion tensor has eigenvalues

kz ¼ 1:43� 10�3 mm2/s, ky ¼ 0:49� 10�3 mm2/s, and

kx ¼ 0:25� 10�3 mm2/s corresponding to the splenium of

the corpus callosum as in [24]. The 800 random-walk

trajectories were partitioned into 100 displacement bins

(Z-bins). Each trajectory was assigned to one of the 100 Z-
bins based on having a displacement between Z0 and

Z0 þ DZ along the diffusion-encoding gradient, with bin
width DZ ¼ 1 lm. The bin locations Z0 were half-integer
multiples of DZ starting from Z0 ¼ 0, and spanning po-

sitive and negative directions. The phase shift caused by

each step in the random walk was calculated as

/ðsÞ ¼ cgðsÞ � rðsÞtstep, where s is the time at which the

step occurs (06 s6TE ), and tstep is the duration of each

step. The total accumulated phase for a randomwalk was

then /ðTEÞ ¼
P

steps /ðsÞ. We then calculated the total
counts (random walks) per bin, the mean position hZi in
the bin (not necessarily equal to Z0), the attenuated real

RehhZijei/i and imaginary ImhhZijei/i signals in the bin,

and the standard deviation (s.d.) of the component signal

in the bin.

The calculated values RehhZijei/i and ImhhZijei/i
enabled the determination of g and i using

g ¼ cos�1ðRehhZijei/iÞ
cgzhZi


 �

and

i ¼ sin�1ðImhhZijei/iÞ
cgzhZi


 �
;

respectively, where the average that calculates g and i is
an average over different values of hZi. The g and i were
calculated for each different setting of e ¼ d=D. Also at

each e, an experimental parameter v was determined

such that g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3ÞðDþ vdÞ

p
in order to calculate

an observed diffusion encoding time tobs ¼ Dþ vd.

3.2. Displacement-specific dephasing in fully permeable

Gaussian diffusion domains

The diffusion properties of a biological tissue are not

usually homogeneous. Therefore, it makes sense to in-

clude the existence of domains in simulations of diffu-
sion processes. The domains that we will consider are

cubic with half sides ranging from 1 lm to 1mm, and the

diffusion properties within a domain are homogeneous

and Gaussian. The diffusion properties of each domain

were obtained by multiplying each of the three diagonal

elements of the diffusion tensor used in the homoge-

neous case by a uniformly distributed random number

ranging from 0.5 to 2.0. The starting point of the ran-
dom walk was always located at the center of the same

home domain, and the trajectories were allowed to pass

freely between the home domain and neighboring do-

mains. The assignment of diffusion properties in each
domain was constant for the different trajectories. Be-
cause the water molecules move for 10ms before the

onset of the diffusion-encoding gradient, the initiation at

the center of the domain is not expected to bias the

simulation results. Because some of the steps in the

calculation of g required the division by the total dis-

placement of a trajectory, no trajectory should have a

total net displacement that is absolutely equal to 0. The

method we found to guarantee non-zero net displace-
ments was to multiply each Markov step by a Gaussian

random variable with mean 1 and standard deviation

0.01. This way of defining the Markov steps was also

used in the restricted diffusion simulations that are

described in the next section.

3.3. Displacement-specific dephasing in impermeable

spherical restricted domains

In biological tissues and porous media, there are of-

ten restricted domains that cannot be represented by the

permeable domains of the previous section. Therefore,

the validity of Eq. (22) needs to be tested in the restricted

case. In the simulations of a spherical restricted domain,

the center of the domain was located at [x ¼ 0, y ¼ 0,

z ¼ 0] and the radius of the sphere was a, with a ranging
from 1 lm to 1mm. Because the location of the starting

point might in this case be very relevant, the starting

point was a random variable that was uniformly dis-

tributed within the sphere, and the time between the

start of the trajectory and the start of the diffusion-

encoding gradient was reduced to 2ms. Identically to

what occurred in the simulations of permeable domains,

the starting domain properties are the same for all tra-
jectories. Because in this case the water molecules were

confined to the same domain, the diffusion properties

were the same for all trajectories and in all simulation

cases. In the restricted domain simulations, the number

of trajectories was 2000 and the number of steps during

texp was 2000 (unless otherwise stated). The values of g
and i were calculated as in the other simulation cases,

and the diffusion coefficient D was calculated by

D ¼ � 1

c gj jdð Þ2 D� d=3ð Þ
log ei/

� �� �
ð26Þ

at each setting of d and D. These simulations required

70 h of computer time using Matlab 5.2 (Mathworks,

Natick, MA, USA) running on a Sun V880 computer
(Sun Microsystems Inc., Santa Clara, CA, USA) with

900MHz processors and 16GB RAM. If Gaussian dif-

fusion is a valid approximation, one could calculate the

diffusion coefficient as being equal to the average square

displacement divided by twice the diffusion time. A

comparison between the diffusion coefficient calculated

using Eq. (26) and the diffusion coefficient calculated

from the displacements for the diffusion times tr and texp
will be made.
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3.4. Simulated restricted diffusion q-space imaging

experiment

The previous section was concerned with the

determination of the diffusion coefficient in a simulated

restricted diffusion experiment. This section goes one

step further, it does the same simulation as described in

the previous section (with fewer trajectories) for 32

different co-linear values of g, with g in the direction of z
varying from �144:0 to 144:0mT/m. The 32 simulated

MR signal intensities are then Fourier transformed us-

ing our altered q-space formalism to define simulated

recovered displacement distributions.

The q-space simulations have as their result, the

rms error between the recovered displacement proba-

bility and the true displacement probability, with the

mean being taken across different values of z. These
simulations required 221 h of computer time using

Matlab 5.2 (Mathworks, Natick, MA, USA) running

on a Sun V880 computer (Sun Microsystems Inc.,

Santa Clara, CA, USA) with 900MHz processors and

16GB RAM.
Fig. 1. Real (A) and imaginary (B) signals simulated for groups of spins

having specificZ displacements.The circles and error bars (red in (A) and

green in (B)) mark the simulated mean signals� 1 SEM for a group of

random walks having Z displacements that fall within a range of Z (a Z-
bin). The signal values of individual random walks are shown as small

black points, normalized to a maximum of 1.0. The real signal attenu-

ations of the Z-bins were least-squares fit to a cosine function (blue curve
in A), while the imaginary signal attenuations of the Z-bins were fit to a

sine function (magenta curve in B). The dephasing curves that would be

obtained for g ¼ 1 and i ¼ 1 are shown as dashed cyan curves in (A) and

(B), respectively. The vertical gray linesmark theZ ¼ 0 line of symmetry.

The simulation assumed a PGSE pulse sequence with D ¼ 44:80ms,

d ¼ 15:75ms, and used random walks of 8050 steps. Note that this

simulation was not used to calculate v but simply illustrates the curve

fitting process for data calculated using a large number of steps.
4. Results

4.1. Displacement-specific dephasing in homogenous

Gaussian diffusion

In Fig. 1A the displacement-specific real signal at-

tenuation RehhZijei/i is graphed as a function of hZi
(red circles). The signal attenuation is normalized so that

the maximum absolute value of both the real and
imaginary components of the MR signal are equal to

1.0. Using only bins with counts greater than 5, we then

fit a cosðcdggzZÞ function to the simulated real signals at

each bin hZi (dark blue curve fit to red circles in Fig. 1A),

and a sinðcdigzZÞ function to the observed imaginary

signal (magenta curve fit to green circles in Fig. 1B).

Although it is expected that g is given by Eq. (21), the

form of i is not a priori known. The dashed cyan line in
Fig. 1A is the curve that would occur if g ¼ 1 (as in the

infinitesimal-d approximation). It is clear in Fig. 1A that

the blue curve is very different from the dashed cyan

line. This indicates that we should expect a simulation

result different from g ¼ 1. This simulation procedure

was repeated for different values of d=D, holding

constant the time from the beginning of the first diffu-

sion-encoding gradient to the end of the second diffu-
sion-encoding gradient (Dþ d). The g and i obtained at

each e ¼ d=D is graphed in Fig. 2, which indicates the

validity of Eq. (21) and confirms the model in Eq. (22).

The parameter v was calculated at each e such that

texp ¼ Dþ vd. By averaging all the v values obtained at

different e, we obtained
tobs ¼ Dþ 1:05ð � 0:10Þd; ð27Þ

where the number in parentheses is the mean and stan-

dard error of the mean (SEM) for 39 different settings of

e. This result is in agreement with texp ¼ Dþ d, which is

the total time from the beginning to the end of the dif-

fusion-encoding period.

4.2. Displacement-specific dephasing in permeable Gauss-

ian diffusion domains

The behavior of g as a function of e is expected to be

in agreement with Eq. (21), in the case of diffusion



Fig. 2. Computation of the bin-averaged g and i as a function of

e ¼ d=D, where Dþ d is held constant. The hgi (red circles) and hii
(green circles) were computed as described in the Methods section. The

ideal curve for g at v ¼ 1; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
, is given for ref-

erence (solid black line). The curves for g at the calculated value of

v ¼ 1:05 (magenta) and v ¼ 0:95 (blue) are given also.
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through permeable Gaussian domains. We observed

that this was true for all domain sizes (cube half-sides a
ranging from 1 to 1000 lm). In the extreme cases of

a ¼ 1lm (Fig. 3A) and a ¼ 1mm (Fig. 3B), the match

with Eq. (21) (blue line) is very good, confirming Eq.

(22). This agreement was also very good for all inter-

mediate cases (not shown).

Fig. 3. Computation of the bin-averaged g as a function of e ¼ d=D
with Dþ d held constant for the case of permeable cubic domains. The

result in (A) is for the case where the cube domain has a half side of

1 lm, the result in (B) is for the case where the cube has a half side of

1mm. The hgi values (red circles) were computed as for Fig. 2, as

described in the Methods section. The ideal curve for g at v ¼ 1,

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
, is given for reference (solid blue line).
4.3. Displacement-specific dephasing in an impermeable

spherical restricted domain

For the case of non-restricted Gaussian diffusion, the

behavior of g as a function of e is in agreement with Eqs.

(21), (22). But it is possible that for small restricted

domains, and long diffusion-encoding times, the Eqs.

(21), (22) are no longer valid. To test this possibility, we
checked the validity of Eq. (21) for a range of domain

sizes and diffusion-encoding times.

For a ranging from 1 to 10 lm, graphs depicting the

behavior of g as a function of d were generated. For

a ¼ 4 lm, gðdÞ is graphed in Fig. 4A, with d ranging

from 0 to 30ms, and ‘‘D� d ¼ 5ms’’. For each value of

a, the critical threshold dc was determined (see Fig. 4A),

and a graph of dcðaÞ (Fig. 4B) was created. For all
values of d; jgj ¼ 18mT/m. In Fig. 4B, we observe that

dc ¼ 0:49a2 þ 0:24 with dc in ms and a in lm.

For a equal to 5, 10, and 15 lm, we then obtained

the behavior of the diffusion coefficient defined as in

Eq. (26) (blue stars in Fig. 5A for the case of

a ¼ 10 lm) as a function of d. Also in Fig. 5A, we can

observe the diffusion coefficient obtained using the

same average square displacement approach and using
the average square displacement at time tr (dotted red

line), and the diffusion coefficient obtained using the

same average square displacement approach at time
texp (green continuous line). The results in Fig. 5A also

indicate that, already for a ¼ 10 lm, the blue stars are

already stabilizing, and that they are stabilizing very

close to the green line and very far from the red line.

This is further indication by the simulations that even

in the restricted case, the diffusion time assigned to the

experiment should be texp and not tr.
4.4. Simulated q-space imaging experiment

For a equal to 5, 10, and 15 lm, the results of the

simulated q-space experiment are that the displacement

distribution obtained with our altered q-space method is

a better fit to the true displacement distribution than the

displacement distribution obtained with standard q-
space. This improvement is especially true for high

values of d. The results for a ¼ 10 lm appear in Fig. 5B,

with the green circles representing the fit quality of our

q-space method, and the red ‘‘plus’’ signs, the fit quality

of the standard q-space method. The results for a ¼ 5

and 15 lm are not shown.



Fig. 5. Computation results for q-space measurements using 32 co-

linear different values of q. The simulated diffusion is inside an im-

permeable sphere of radius a ¼ 10 lm. In (A), it is clear that the dif-

fusion coefficient calculated using Eq. (26) (blue ‘‘plus’’ sign) does not

approximate the diffusion coefficient calculated using the average

square displacement at time tr (dotted red line), but instead approxi-

mates the diffusion coefficient calculated using the average square

displacement at time texp (green continuous line). The dashed green

lines are obtained for diffusion times defined by the simulation result

expressed in Eq. (27). The results in (B) show the root-mean square

error between the true displacement probability (obtained directly

from the simulation) and two types of inferred distributions. The red

‘‘plus’’ sign corresponds to the case where the inferred distribution is

obtained using a standard 32-points q-space method while considering

that the diffusion time is D� d=3. The green circle corresponds to the

case where the inferred probability is obtained by a 32-points q-space
Fourier transformation of the MR-signal intensity with g ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
.

Fig. 4. Computation of the bin-averaged g as a function of d (in units

of ms) with ‘‘D� d’’ held equal to 5ms, for the case of a spherical

restricted domain. The result in (A) is for the case where the spherical

domain has a radius of 4 lm. The hgi values (red circles) were com-

puted as for Fig. 2, except that we averaged 2000 trajectories (instead

of 800), the time for each Markov step was defined so that during texp
there are 2000 Markov steps (instead of being set to 0.1ms), and the

starting point of the trajectory has an equal probability of being

anywhere inside a bounding cube of side 8 lm (points outside the

spherical domain were not considered). The ideal curve for g at v ¼ 1,

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� d=3Þ=ðDþ dÞ

p
, is given for reference (solid blue line). It can

be seen that for a certain d, the value of hgi no longer coincides with

the ideal curve (blue line). Two cyan bands are then built, one that is

equal to 1.1 times the ideal curve and one that is equal to 0.9 times the

ideal curve. The time dc is equal to the time d where the hgi curve has
crossed any of the bands twice, and is signaled by a black line with a

yellow circle marking the actual simulation result. In (B), we can see

the plot of dc as a function of the square of the smallest distance to

center, a. The black points are the simulation results, the green line is

the best linear fit [dc ¼ 0:486a2 þ 0:241], and the red lines define a 90%

certainty. The slope of the green line is 0.486 and the value at the origin

is 0.241.
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5. Discussion

Because of limits on jgj in human MRI [25], the re-

quired diffusion sensitivity is typically obtained by in-

creasing d. Therefore, in human MRI it is common to

encounter diffusion-encoding gradients that have a finite

duration where the condition d << D does not apply

and sometimes the duration approaches d 	 D [11]. In
this work we present a theoretical framework for col-

lecting and analyzing q-space data in the setting of finite-

duration diffusion-encoding gradients, while also

studying the limitations of the approach in the case of

restricted diffusion. By introducing the concept of dis-

placement-specific dephasing, the intrinsic physical dis-

placement probability of a diffusing substance can be

linked to the extrinsic effect of the diffusion-encoding
gradients on the NMR phase. This provides a solution

to the q-space equation that relates the inverse Fourier

transform of measured signal attenuations to the
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observed probability distribution. The revised q-space
equation indicates that texp ¼ Dþ d must be held con-

stant during the q-space data acquisition, the conven-

tional index q should be adjusted by multiplying by the

value of the g factor in Eq. (21) prior to Fourier trans-

formation, and the resulting probability is a snapshot of

the probability distribution at time Dþ d. The latter

would be particularly relevant to take into account when

interpreting the shape of the measured distribution in
terms of sample or tissue microstructure, and when

analyzing the dependence of the diffusion coefficient on

the diffusion time.

The simulations indicate the validity of Eqs. (21) and

(22) that define the cosine dependence of the displace-

ment-specific dephasing Rehrjei/i for homogeneous and

non-homogeneous free Gaussian diffusion, even out to

the extremes of d 	 D. While the fits to simulated data
are not perfect, they are within the errors that one would

expect given the limitations of simulations due to factors

such as width of Z-bins, number of trajectories per bin,

etc. It is the existence of this cosine dependence of

Rehrjei/i that enables the inverse Fourier transform to

be performed to yield the q-space Eq. (23). Simulations

also show validity of the cosine dependence of Rehrjei/i,
and thus the capacity to recover the probability with
finite-d q-space imaging, in the case where the sample is

composed of macroscopic permeable domains of free

Gaussian diffusion (e.g., macroscopic tissue heteroge-

neity or partial volume effects), as might be expected due

to the linear nature of the inverse Fourier transforma-

tion. The formalism is valid even in the case where the

molecules enter and exit different free-diffusion domains

during the experimental diffusion-encoding time.
Simulations also indicate that, in the case of com-

pletely impermeable restricted domains, the formalism is

valid under some conditions. More specifically, for

spheres, the standard MRI settings herein of d 	
15:75ms and gz ¼ 18:0mT/m would enable q-space
probability measurements of restricted cubes as small as

a 	 4:6 lm (simulations not shown) and spheres as small

as a 	 5:7 lm (based on Figs. 4A and B). A simple
doubling of gradient strength would enable d to be re-

duced by a factor of 2 for the same q value, which is

easily attainable using high-performance clinical gradi-

ent hardware. Such an effect would lower the minimum

spherical dimension to a 	 3–3:5 lm. A general limit of

a > 4 lm would mean that q-space measurements using

these settings could be performed in biological systems

that have spherical cells no smaller than a diameter of

 8 lm. Cells such as neurons have cell bodies larger

than this, red blood cells approximate this size, and

axonal dimensions are larger than this limit in the lon-

gitudinal direction but smaller than this limit in the

transverse direction. These are conservative estimates

because they assume complete impermeability of the

compartment. Most cell membranes have some water
permeability, which may loosen this size requirement.
These estimates are only approximate as they are based

on the graphs in Fig. 4 where ‘‘D� d’’ is fixed at 5ms.

Future simulations where d and ‘‘D� d’’ are varied si-

multaneously might better enable the selection of opti-

mal pulse sequence parameters.

Although several papers (e.g., [18,25]) have discussed

why finite d complicates the interpretation of q-space
imaging experiments, to our knowledge herein is the first
work determining a way to compensate those compli-

cations by use of an altered q-space formalism. The

capacity to compensate the complications was found to

depend on both the size of the restricted domain and the

duration of the diffusion-encoding timing parameter.

Changing q by changing g while keeping d and D fixed

(Eq. (25)) allows one to obtain the displacement prob-

ability distribution by changing the velocity of spin ro-
tation without altering any other diffusion parameter.

This experimental approach was used in [26] and [11].

The results herein indicate that the studies in [11,26]

obtain the true displacement probability for the longi-

tudinal axonal direction, but not for the transverse ax-

onal direction. Our formalism also may enable greater

experimental flexibility as q-space can be probed in

principle by changing d and D, but only if their sum
Dþ d is held constant.

Because the data acquired in multi-exponential

analyses of diffusion MRI signal intensities is similar to

the data used in q-space imaging, this work might also

provide some new insights on how to make multi-ex-

ponential analysis of DMRI data.

The q-space simulation results obtained that our

proposed q-space method works better or just as well as
the standard q-space method if d < dc (the result for

a ¼ 10 lm is in Fig. 5B, the result for a ¼ 15lm is not

shown). But it was also obtained that, even in the case

where d > dc, our altered q-space method is better at

predicting the correct form of the displacement distri-

bution than the standard q-space method (the results for

a ¼ 5 lm are not shown).
6. Conclusion

A revised formalism for treating q-space data is

defined (Eq. (23)) in the case where the condition

d << D is not met. This formalism is shown to make

correct predictions of the displacement distribution for

the case of water molecules undergoing a Brownian
motion that can be approximated as a Markov process

(random walk). The validity of the formalism was

confirmed even if the voxel is divided into microscopic

regions with different diffusion properties, or if the

water molecules are constrained to move in a restricted

domain with an impermeable wall (provided the

domains are large enough or the diffusion-encoding
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timings are short enough). The two types of restricted
domains studied were the cube and the sphere, but

most of the presented results are for the sphere. The

results in Fig. 5B (and other results not shown) are a

clear indication that even in the restricted case, our q-
space method provides better results than the standard

q-space method.
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