Apparent Diffusion Coefficient as an MR Imaging Biomarker of Low-Risk Ductal Carcinoma in Situ: A Pilot Study

Purpose:
To evaluate the potential of apparent diffusion coefficients (ADCs) obtained at quantitative diffusion-weighted magnetic resonance (MR) imaging of the breast as a biomarker of low-grade ductal carcinoma in situ (DCIS).

Materials and Methods:
This retrospective study was approved by an institutional review board, and the requirement to obtain informed consent was waived. Twenty-two women (age range, 36–75 years; mean age, 56.4 years) with pure DCIS (seven with low-grade DCIS, five with intermediate-grade DCIS, and seven with high-grade DCIS) and three with microinvasion underwent breast MR imaging at 1.5 T between January 2008 and November 2010. MR examinations included contrast material–enhanced (gadoteridol) T1-weighted imaging and diffusion-weighted MR imaging with b values of 0 and 1000 sec/mm2. ADC maps were generated. The distributions of the ADCs in regions of interest covering the lesions were compared among the three grades by using linear mixed-model analysis, and the discriminatory power of the lesion minimum ADC was determined with receiver operating characteristic analysis.

Results:
The mean ADC was 1.42×10^{-3} mm2/sec (95% confidence interval [CI]: 1.31×10^{-3} mm2/sec, 1.54×10^{-3} mm2/sec) for low-grade DCIS, 1.23×10^{-3} mm2/sec (95% CI: 1.10×10^{-3} mm2/sec, 1.36×10^{-3} mm2/sec) for intermediate-grade DCIS, 1.19×10^{-3} mm2/sec (95% CI: 1.08×10^{-3} mm2/sec, 1.30×10^{-3} mm2/sec) for high-grade DCIS, and 2.06×10^{-3} mm2/sec (95% CI: 1.94×10^{-3} mm2/sec, 2.18×10^{-3} mm2/sec) for normal breast tissue. The mean ADCs for high- and intermediate-grade DCIS were significantly lower than that for low-grade DCIS ($P < .01$ and $P = .03$, respectively), and the mean ADC for low-grade DCIS was significantly lower than that for normal tissue ($P < .001$). The lesion minimum ADC for low-grade DCIS was also significantly higher than that for high- and intermediate-grade DCIS ($P < .01$). A threshold of 1.30×10^{-3} mm2/sec for the minimum ADC in the diagnosis of low-grade DCIS had a specificity of 100% (12 of 12 patients; 95% CI: 73.5%, 100%) and a positive predictive value of 100% (four of four patients; 95% CI: 39.8%, 100%).

Conclusion:
These preliminary results suggest that quantitative diffusion-weighted MR imaging could be used to identify patients with low-grade DCIS with very high specificity. If the results of this study are confirmed, this approach could potentially spare those patients from invasive approaches such as mastectomy or axillary lymph node excision.

From the Department of Diagnostic Imaging and Nuclear Medicine (M.I., T.O., K.F., S.K., K.T.) and Human Brain Research Center (D.L.B.), Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Departments of Radiology (M.I., R.O.) and Pathology (M.F., H.S.), Kitano Hospital, Osaka, Japan; Neurospin, CEA-Saclay, Gif-sur-Yvette, France (D.L.B.); and Translational Research Center, Kyoto University Hospital, Kyoto, Japan (S.T.). Received October 7, 2010; revision requested November 22; revision received February 1, 2011; accepted March 16; final version accepted April 20.

Address correspondence to M.I. (e-mail: mamiiima@kuhp.kyoto-u.ac.jp).

© RSNA, 2011
With the advent of widespread mammographic screening for breast cancer in the early to mid-1980s, the detection of ductal carcinoma in situ (DCIS) has increased worldwide. Currently, DCIS accounts for 20%–30% of all newly diagnosed breast cancers in the United States and approximately 20% of cases detected with mammography (1). An important issue, however, is that one cannot predict whether DCIS will evolve to invasive ductal carcinoma. Hence, even though low-grade DCIS may be considered a nonlethal type of tumor, all cases of DCIS are usually treated as though they will become invasive ductal carcinoma. Indeed, recent studies have pointed out that the natural history of low-grade DCIS can extend more than 4 decades and that it is unlikely to become invasive (2,3).

Recent immunohistochemical studies have revealed that, unlike adenoma-carcinoma of the colon, which evolves following a single line, benign proliferative breast disease, some low-grade DCIS, most high-grade DCIS, and invasive carcinoma develop through distinct pathways (4). Those findings suggest that different therapeutic approaches could be proposed according to DCIS grade. Hence, there is a need for more accurate DCIS grading at the time of the initial diagnosis to customize the therapeutic approach. With mammography, it is possible to suspect the presence of high-grade lesions on the basis of the morphologic characteristics of microcalcifications (5); however, grading of DCIS remains difficult, with sparse biopsy sampling, because high- and low-grade components may coexist in a patient or even within one duct.

Lately, breast magnetic resonance (MR) imaging has been successfully introduced in the management of breast cancer—particularly DCIS (6). Although mammography can depict 80%–85% of all DCIS, the sensitivity of MR imaging in the accurate assessment of the extent of DCIS reaches 89%, which is much higher than that of either mammography or ultrasonography (US) (53% and 47%, respectively) (7). There is increasing evidence to suggest that, overall, breast MR imaging may be more sensitive than mammography—especially in the diagnosis of high-grade DCIS (8,9).

More recently, diffusion-weighted MR imaging has been introduced for cancer imaging. Diffusion-weighted imaging is highly sensitive to tissue microstructure (10,11), and it has been observed that the apparent diffusion coefficient (ADC) is significantly reduced in primary or secondary cancer tissues (12–14)—although the exact mechanism between diffusion reduction and cell proliferation remains unclear (15). Diffusion-weighted imaging was found to have a very high sensitivity of 97% in the detection of breast malignancy (16). Diffusion-weighted images and quantitative ADC maps have been successfully used to differentiate between benign and malignant breast lesions as well as to depict tumor extent (17–19) and may have the potential to depict many mammographically and clinically occult breast carcinomas (20). In light of those encouraging results, we performed this study to evaluate the potential of ADCs obtained at quantitative diffusion-weighted MR imaging of the breast as a biomarker of low-grade DCIS.
imaging was performed before or 2 weeks after biopsy to avoid artifacts. Mammography showed microcalcifications in 17 of the 25 patients and focal asymmetry suspicious for malignancy in five. There were no suspicious findings at mammography in three patients; however, two of the three patients were suspected of having DCIS at breast US and one patient had nipple erosion. Only patients with pure DCIS (without microinvasion or invasive breast cancer elsewhere) were enrolled in this study. Three patients were excluded from the study. Two patients (one with intermediate DCIS and one with low-to-intermediate-grade DCIS) were excluded because their diffusion-weighted images showed no contrast with the background owing to a very low signal-to-noise ratio, and one patient (with intermediate DCIS) was excluded because of incomplete fat suppression. Hence, 22 patients (age range: 36–75 years; mean age, 56.4 years) were initially included in this study. Seven patients had low-grade DCIS, five had intermediate-grade DCIS, seven had high-grade DCIS, and three had DCIS with microinvasion. One patient had a low-to-intermediate-grade DCIS, which was considered low-grade DCIS because the lesion was classified as Van Nuys Prognostic Index 4, which is associated with the best DCIS prognosis (21,22). Because the status of DCIS lesions with microinvasion is still controversial (23), the three patients with microinvasion were excluded from the statistical analysis performed only with pure DCIS cases.

MR Image Acquisition

Breast MR imaging was performed by using a 1.5-T unit (Intera and Achieva; Philips Healthcare, Eindhoven, the Netherlands) equipped with a dedicated four-channel breast array coil. The following images were acquired after obtaining localizer images: bilateral sagittal fat-suppressed T2-weighted images (4937/90 [repetition time msec/echo time msec], 20-cm field of view, 256 × 256 matrix, 4-mm-thick sections, 162-second acquisition time); fat-suppressed, diffusion-weighted echo-planar images (8000/96; 40-cm field of view; 128 × 104 matrix interpolated to 256 × 256 [ie, 1.56 × 1.56-mm resolution]; parallel acquisition factor of 2; 5-mm-thick sections; 182-second acquisition time; and application of motion probing gradient pulses along the x, y, and z directions with b values of 0 and 1000 sec/mm²); and free-breathing dynamic contrast material–enhanced MR images, which were obtained by using a three-dimensional fat-suppressed T1-weighted gradient-echo sequence (6.1/3.5, 15° flip angle, 40-cm field of view, 400 × 400 matrix, 2-mm-thick sections reconstructed to 0.78 × 0.78 × 1-mm resolution, 255-second acquisition time), which were acquired before and immediately after infusion of 0.2 mL/kg gadoteridol (ProHance; Bracco-Eisai, Tokyo, Japan). Central k-space data were acquired first to catch early contrast enhancement. T1-weighted images were also acquired 9 minutes after infusion, but those images were not considered in this study. With diffusion-weighted imaging data, the quantitative diffusion imaging (ADC) was calculated on a voxel-by-voxel basis as follows: $ADC = (1/b) \times \ln (S_b/S_0)$, where S_b and S_0 are the signal intensities of each voxel obtained with values of 0 and 1000 sec/mm², respectively.

Data Postprocessing

Two independent readers (M.I. [radiologist A] and R.O. [radiologist B], with 3 and 6 years of experience in breast MR imaging, respectively) manually drew regions of interest (ROIs) on the diffusion-weighted images ($b = 1000$ sec/mm²) (Figs 1, 2). The readers were blinded to the final pathologic results. ROIs were placed in regions with high signal intensity on the diffusion-weighted images; the contrast and morphologic characteristics at the early phase of contrast-enhanced T1-weighted imaging and T2-weighted imaging were used to guide ROI placement to avoid areas of T2 shine-through that are usually found in necrotic or cystic parts. The signal intensity of the lesion on the diffusion-weighted images was visually classified as high or low compared with that of the corresponding background breast tissue. T1-weighted images were also used retrospectively to assess the nature of borderline lesions with very high or very low ADCs. ROIs were defined as slightly smaller than the actual lesions to reduce partial volume effects, but only ROIs larger than 20 mm² were considered as meaningful and retained for further analysis. Because DCIS is usually a multifocal disease, several ROIs were drawn to depict each lesion. Hence, the number of ROIs for each patient varied from one to eight (Fig 3). Control ROIs were drawn in the normal homogeneous breast parenchyma in the center of the contralateral breast, avoiding contamination by fatty tissue. The average of mean ROI sizes of normal tissues was 140.1 mm² (range, 106.8–175.0 mm²). The ROIs were then copied and pasted onto the corresponding ADC map for quantitative analysis. For each ROI, we extracted the mean ADC and the ROI area. The total lesion size, which was defined as the sum of the areas of all ROIs used to depict the lesion for each patient, was also compared among each grade. Because the scope of this study was purely focused on quantitative diffusion-weighted MR imaging, the kinetics of contrast enhancement were not considered. The value of contrast-enhanced MR imaging for DCIS has been reported elsewhere (8,24).

Histopathologic Analysis

Histopathologic analysis was performed with use of specimens obtained from surgery (mastectomy or lumpectomy). Blocks were processed, and sections were cut and stained with hematoxylin and eosin according to standard pathology protocols and studied by experienced pathologists (H.S. and M.F., with 10 and 5 years of experience in breast pathology, respectively). Histologic circumscription without irregular, infiltrative, or fingerlike extensions into the adjacent stroma was regarded as indicative of a noninvasive growth pattern. Nuclear grade and presence of necrosis were assessed and the DCIS grade was established (23). On slides where microinvasion was suspected, immunohistochemistry was performed by using an automated immunostainer (Ventana BenchMark AutoStainer; Ventana Medical Systems, Tucson, Ariz).
Systems, Tucson, Ariz) with antibodies against two myoepithelial markers, CD10 (diluted 1:50; 56C6, Novocastra, Newcastle, United Kingdom) and p63 (diluted 1:25; 7JUL, Novocastra). Immunoreactivity for CD10 and p63 was evaluated at the periphery of each circumscribed nest, and lesions lacking immunoreactivity for myoepithelial markers were diagnosed as microinvasion.

Statistical Analysis

To assess the reliability of our multiple ROI approach, the interobserver variability between radiologists A and B was evaluated by using intraclass correlation coefficient type “2,1” and the Pearson correlation coefficient for the mean ADC in the ROI and ROI size. The level of correlation was defined as very strong if \(r = 1.0 - 0.9 \), strong if \(r = 0.9 - 0.7 \), moderate if \(r = 0.7 - 0.5 \), and weak if \(r < 0.5 \). Then, ROIs from both radiologists were merged, taking the average value for the mean ADC and ROI size analyses.

To evaluate whether distributions of ADCs and ROI sizes differed among the three grades, “ROI-based” analysis was performed by using the mean ADC and the ROI sizes of all ROIs. We used linear mixed-model analysis for repeated measurement data (26) and estimated the least-square means (adjusted means) and the 95% confidence intervals (CIs) of the ADCs and ROI sizes in each grade adjusted for within-patient correlation. The \(P \) values for the differences between low-grade DCIS and intermediate- or high-grade DCIS were adjusted for multiple comparisons with use of the Hochberg procedure. A \(P \) value from a...
The effectiveness of this diagnostic procedure in the differentiation of low-grade DCIS from non-low-grade DCIS was evaluated by using receiver operating characteristic (ROC) analysis. With use of ROC analysis, a cutoff value for the lesion minimum ADC was established under the restriction of 100% specificity while maximizing sensitivity.

For the ROI and lesion size statistical analysis, a log transformation was used to account for the skewness of the distribution. For all tests, $P < .05$ was considered indicative of a statistically significant difference. All statistical analyses were conducted by using software (Medcalc, version 11.3.2.0 [MedCalc Software, Mariakerke, Belgium], and SAS, version 9.2 [SAS Institute, Cary, NC]).

Results

MR Imaging Findings

The typical appearance of high- and low-grade tumors on contrast-enhanced T1-weighted images, diffusion-weighted images ($b = 1000$ sec/mm2), and ADC maps is shown in Figures 1 and 2. Two cases of low-grade DCIS exhibited low contrast, whereas all other lesions showed high contrast with surrounding tissue on diffusion-weighted images ($b = 1000$ sec/mm2). Results from all patients are summarized in Figure 3.

Some low-grade DCIS lesions contained parts with very low ADCs—even lower than those of high-grade DCIS. In one patient, the minimum ADC was 1.07×10^{-3} mm2/sec; this was probably related to bleeding or high protein content, as suspected from very high signal intensities on the T1-weighted images. Another patient with a high-grade lesion had one region with a very high ADC (1.58×10^{-3} mm2/sec). The lesion was situated very near the nipple, and a collection of mucous or liquid due to the obstruction of the duct by the lesion may have resulted in the high ADC.

Interobserver Variability

Radiologist A identified 69 ROIs (24 for high-grade DCIS, 24 for intermediate-grade DCIS, and 21 for low-grade DCIS), and radiologist B identified 66 ROIs (22 for high-grade DCIS, 24 for intermediate-grade DCIS, and 20 for low-grade DCIS). The Pearson correlation of the 66 ROIs was strong (0.91 for mean ADC, 0.95 for ROI size), and the intraclass correlation of the 66 ROIs was moderate (0.72 for mean ADC, 0.56 for ROI size). It is important to note that the lesion minimum ADC (see below) was not found in the three ROIs identified by radiologist A and not by radiologist B.
Comparison of ADCs across Grades

The adjusted mean ADC of all ROIs was 1.42×10^{-3} mm2/sec (95% CI: 1.31×10^{-3} mm2/sec, 1.54×10^{-3} mm2/sec) for low-grade DCIS, 1.23×10^{-3} mm2/sec (95% CI: 1.10×10^{-3} mm2/sec, 1.36×10^{-3} mm2/sec) for intermediate-grade DCIS, and 1.19×10^{-3} mm2/sec (95% CI: 1.08×10^{-3} mm2/sec, 1.30×10^{-3} mm2/sec) for high-grade DCIS (Table 1). The mean ADC of high-grade DCIS lesions was significantly lower than that of low-grade DCIS lesions ($P < .01$). The mean ADC of intermediate-grade DCIS was also significantly lower than that of low-grade DCIS ($P = .03$), and there was a significant negative trend between mean ADC and lesion grade ($P < .01$) despite the overlap between ADCs. The sample mean in normal tissue was 2.06×10^{-3} mm2/sec (range, $1.32 \text{ to } 2.47 \times 10^{-3}$ mm2/sec; 95% CI: 1.94×10^{-3} mm2/sec, 2.18×10^{-3} mm2/sec). The mean ADC of low-grade DCIS was significantly lower than that of normal breast tissues ($P < .001$).

The mean minimum ADC was 1.35×10^{-3} mm2/sec (95% CI: 1.24×10^{-3} mm2/sec, 1.46×10^{-3} mm2/sec) for low-grade DCIS, 1.09×10^{-3} mm2/sec (95% CI: 0.97×10^{-3} mm2/sec, 1.22×10^{-3} mm2/sec) for intermediate-grade DCIS, and 1.11×10^{-3} mm2/sec (95% CI: 1.01×10^{-3} mm2/sec, 1.22×10^{-3} mm2/sec) for high-grade DCIS (Table 2). The minimum ADC of low-grade DCIS was significantly higher than that of high-grade DCIS ($P < .01$). The minimum ADC of intermediate-grade DCIS was significantly different from that of low-grade DCIS ($P < .01$). There was a significant negative trend between minimum ADC and lesion grade ($P < .01$). The minimum ADCs for the three lesions with micro-invasion were $0.75, 1.18$, and 1.21×10^{-3} mm2/sec.

Comparison of ROI and Lesion Sizes across Grades

The adjusted means of the ROI sizes were 65.2 mm2 (95% CI: 42.8 mm2, 99.1 mm2), 88.1 mm2 (95% CI: 56.4 mm2, 138.7 mm2), and 45.2 mm2 (95% CI: 30.2 mm2, 67.6 mm2) for low-, intermediate-, and high-grade DCIS, respectively (Table 3). The difference in ROI size between high- and low-grade lesions was not significant ($P = .21$), and there was not a significant negative trend between ROI size and tumor grade ($P = .25$). The sample means of the total lesion sizes were 303.6 mm2 (95% CI: 91.4 mm2, 515.7 mm2), 521.0 mm2 (95% CI: 270.0 mm2, 772.0 mm2), and 165.7 mm2 (95% CI: 46.4 mm2, 377.9 mm2) for low-, intermediate-, and high-grade DCIS, respectively. There was also no statistically significant difference in the total lesion size among grades ($P = .39$). It should be noted that, although the total lesion size reflects the real lesion size, it is actually slightly smaller because only ROIs with a surface larger than 20 mm2 were considered.

ROC Curve Analysis

The discriminatory power of the lesion minimum ADC (to differentiate low-grade DCIS from non-low-grade DCIS) was good, with an area under the ROC curve of 0.89 (95% CI: $0.66, 0.99$) for radiologist A and 0.88 (95% CI: $0.65, 0.98$) for radiologist B (Fig 4).

The minimum ADC to obtain 100% specificity (12 of 12 patients; 95% CI: 73.5%, 100%) while maximizing sensitivity was 1.30×10^{-3} mm2/sec. All four patients whose minimum ADC was above this threshold had low-grade DCIS. On the basis of this threshold, the same four of 19 patients (21%) would have been correctly identified by each of the two radiologists as having low-grade DCIS with a positive predictive value of 100% (four of four patients; 95% CI: 39.8%, 100%) and a specificity of 100% (12 of 12 patients; 95% CI: 73.5%, 100%). None of the patients with intermediate- or high-grade DCIS or microinvasion had a minimum ADC below the threshold. The sensitivity was 57% (four of seven patients; 95% CI: 18.4%, 90.1%), and the negative predictive value was 80% (12 of 15 patients; 95% CI: 51.9%, 95.7%).

Discussion

The diagnosis of DCIS is rapidly increasing because of the widespread use of...
The statistical significance of the negative correlation found between tumor grade and ADC, as seen in invasive ductal carcinoma (17,19), suggests that the most malignant part of a tumor is associated with the ROI with the lowest ADC. Indeed, the concept of “minimum ADC” is central because, as shown in the spectrum of values seen in some of our patients, the values can vary. It is important to consider that although there are, of course, overlaps in the ADCs for the high-, intermediate-, and low-grade lesions in the patient population, it is apparently possible to establish a minimum ADC threshold of potential clinical importance with which to identify low-grade lesions.

The use of ROIs is much more robust and less sensitive to noise than is the use of voxel minimum ADC values that have sometimes been used (31,35). Approximately 4%–23% of biopsied DCIS lesions will eventually prove to be invasive breast cancer at final pathologic examination (36,37). Although the sensitivity of open excisional biopsy reaches almost 100%, it is not applied to all DCIS cases because of its invasiveness. One may argue that diffusion-weighted imaging does not have the resolution to depict invasiveness at a microscopic level compared with biopsy, but biopsy sampling is necessarily sparse and the possibility of scrutinizing the whole lesion with diffusion-weighted imaging, especially when different grades might coexist, may outbalance this limitation.

Most diffusion-weighted imaging studies of the breast have been performed at 1.5 T, with a wide range of b values (34,38,39), but ADC accuracy improves with b values of more than 850 sec/mm² at 3.0 T (40). Our choice of b values as high as 1000 sec/mm² was motivated by the low ADCs found in high-grade lesions, ADCs that are close to those in the brain. With large b values, lesions with low ADC appear with a much better contrast. This is especially useful in high-density breasts, where MR imaging appears to be better than mammography (41), and the prevalence of DCIS seems to be slightly higher for young women with high-density breasts (42).

Table 3

<table>
<thead>
<tr>
<th>Grade</th>
<th>Adjusted Mean*</th>
<th>Median</th>
<th>Range</th>
<th>95% CI</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>65.2</td>
<td>63.5</td>
<td>24.5–272.0</td>
<td>42.8, 99.1</td>
<td>Ref</td>
</tr>
<tr>
<td>Intermediate</td>
<td>88.1</td>
<td>96.3</td>
<td>35.5–334.5</td>
<td>56.4, 138.7</td>
<td>.32</td>
</tr>
<tr>
<td>High</td>
<td>45.2</td>
<td>42.5</td>
<td>24.5–144.5</td>
<td>30.2, 67.6</td>
<td>.21</td>
</tr>
</tbody>
</table>

Note.—Results of a trend test did not show a significant negative trend between ROI size and tumor grade (P = .25, linear mixed model).

* A log transformation was used to account for the skewness of the distribution on the histogram. Adjusted means were converted back with an inverse transformation.

† P values reflect the difference in mean ROI size from low-grade DCIS. Ref = reference.

Figure 4: Graph shows ROC curves for differentiating low-grade DCIS from other grades of DCIS on the basis of minimum ADC values. Red line = radiologist A, blue line = radiologist B. The area under the ROC curve was 0.89 (95% CI: 0.66, 0.99) for radiologist A and 0.88 (95% CI: 0.65, 0.98) for radiologist B. Diagonal reference line indicates worst discriminatory power.
A limitation of our study is the small population size; our minimum ADC threshold value might not be representative of that of a larger population, including patients with lesions other than DCIS. Because the ADC is also reduced in other breast malignancies (17,19), our minimum ADC concept could probably be extended to non-DCIS lesions pending further investigation with a larger patient cohort. Identification of lesions on diffusion-weighted images may not always be easy. Artifacts such as susceptibility, chemical shift, or distortion, for which diffusion-weighted echo-planar imaging is very sensitive, could impair ADC measurements (43). T2 shine-through and blackout effects, hemorrhage, necrosis, cystic lesions, or mucous protein components may cause changes in signal intensity on diffusion-weighted images. It is important to emphasize the need for high-quality diffusion-weighted images and fat suppression to achieve reliable quantitative diffusion MR images. Fat exhibits very low ADCs and may mimic high-grade lesions. Conversely, efficient fat suppression may also interfere with ADC measurements when fatty and tumor tissues overlap, possibly decreasing the signal intensity level substantially. It is always a good practice to check the overall signal intensity level before assessing bordering ADCs.

In summary, we found a negative correlation between ADC and DCIS grade. In addition, we determined an ADC threshold (1.3×10^{-3} mm2/sec) that can help identify low-grade DCIS lesions with high specificity. Although further prospective assessment in a larger patient cohort is needed, the results of our study suggest that ADCs obtained with quantitative diffusion-weighted MR imaging may play a role as a highly specific biomarker for low-grade DCIS. Once the specificity of this approach is documented with further research, it might be possible to use conservative, minimally invasive approaches in patients with low-grade DCIS, which would decrease the economic and social burden associated with breast cancer (44). Diffusion-weighted imaging could also potentially help decrease the distress of women in whom low-risk DCIS has been diagnosed because they would be offered lighter treatment options than those treated for invasive breast cancer (45).

Acknowledgments: The authors thank Akitoshi Takamine, RT, Kiyoshi Kosaka, RT, and Teruaki Nishida, RT, of Kitano Hospital, Osaka, Japan, for their excellent technical assistance and kind support.

Disclosures of Potential Conflicts of Interest: M.I. No potential conflicts of interest to disclose. D.L.B. No potential conflicts of interest to disclose. R.O. No potential conflicts of interest to disclose. T.O. No potential conflicts of interest to disclose. K.F. No potential conflicts of interest to disclose. S.K. No potential conflicts of interest to disclose. S.T. No potential conflicts of interest to disclose. M.F. No potential conflicts of interest to disclose. H.S. No potential conflicts of interest to disclose. K.T. No potential conflicts of interest to disclose.

References